1-Ethyl-3-methyl-1H-imidazol-3-ium spiro­penta­borate

نویسندگان

  • T. Gannon Parker
  • Divya Pubbi
  • Austin Beehler
  • Thomas E. Albrecht-Schmitt
چکیده

In the anion of the title compound, (C6H11N2)[B5O6(OH)4], both six-membered borate rings adopt a flattened boat conformation with the spiro-B atom and its opposite O atom deviating from the remainders of the rings by 0.261 (3)/0.101 (2) and 0.160 (3)/0.109 (2) Å, respectively. The imidazolium cation also deviates from planarity due to rotation of the ethyl group (as indicated by the C-N-C-C torsion angle) by 71.4 (2)° out of the plane of the heterocycle. In the crystal, the anions are connected in a three-dimensional network through O-H⋯O hydrogen bonds, forming channels along the a-axis direction. The cations are situated in the channels, forming C-H⋯O hydrogen bonds with the anions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regioselective conversion of epoxides to vicinal nitrohydrins catalyzed by silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as a green and reusable catalyst under aqueous thermal conditions

An environmentally benign procedure for the synthesis of vicinal nitrohydrins via the regioselective ring opening reaction of epoxides with nitrite anion using silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as an effective heterogeneous phase transfer catalyst was described. Short reaction time, high yield of products, simple work-up proc...

متن کامل

Regioselective conversion of epoxides to vicinal nitrohydrins catalyzed by silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as a green and reusable catalyst under aqueous thermal conditions

An environmentally benign procedure for the synthesis of vicinal nitrohydrins via the regioselective ring opening reaction of epoxides with nitrite anion using silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as an effective heterogeneous phase transfer catalyst was described. Short reaction time, high yield of products, simple work-up proc...

متن کامل

An Effective Green Procedure for the Synthesis of Phenacyl Derivatives Catalyzed by Silica-bound 3-{2-[Poly(ethylene glycol)]ethyl}-substituted 1-Methyl-1H-imidazol-3-ium Bromide as a Recyclable Phase Transfer Catalyst under Aqueous Media

The use of a recyclable phase transfer catalyst, SiO2-PEG-ImBr, is demonstrated in a simple and highly efficient synthesis of phenacyl derivatives by nucleophilic substitution reaction of phenacyl halides with different anions in water. Advantages of this system are easy work-up, moderate to good yields, and recyclable catalyst. The catalyst can be recycled and reused several times with no loss...

متن کامل

Crystal structures of the two salts 2-methyl-1H-imidazol-3-ium nitrate–2-methyl-1H-imidazole (1/1) and 2-methyl-1H-imidazol-3-ium nitrate

The title salts, C4H7N2 (+)·NO3 (-)·C4H6N2, (I), and C4H7N2 (+)·NO3 (-), (II), were obtained from solutions containing 2-methyl-imidazole and nitric acid in different concentrations. In the crystal structure of salt (I), one of the -NH H atoms of the imidazole ring shows half-occupancy, hence only every second mol-ecule is in its cationic form. The nitrate anion in this structure lies on a twof...

متن کامل

Hantzsch reaction using [Mesi]Cl as a new, efficient and BAIL catalyst

In this work, the efficiency, generality and applicability of new Bronsted acidic ionic liquid (BAIL) 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride {[Msei]Cl} as heterogeneous and green catalyst for organic transformations are studied. Herein, the following one-pot multi-component reactions in the presence of [Msei]Cl are investigated: (i) the synthesis of quinoxaline derivatives fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2014